Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 301, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639797

RESUMO

Water bodies are increasingly contaminated with a diversity of organic micropollutants (OMPs). This impacts the quality of ecosystems due to their recalcitrant nature. In this study, we assessed the removal of OMPs by spent mushroom substrate (SMS) of the white button mushroom (Agaricus bisporus) and by its aqueous tea extract. Removal of acesulfame K, antipyrine, bentazon, caffeine, carbamazepine, chloridazon, clofibric acid, and N, N-diethyl-meta-toluamide (DEET) by SMS and its tea was between 10 and 90% and 0-26%, respectively, in a 7-day period. Sorption to SMS particles was between 0 and 29%, which can thus not explain the removal difference between SMS and its tea, the latter lacking these particles. Carbamazepine was removed most efficiently by both SMS and its tea. Removal of OMPs (except caffeine) by SMS tea was not affected by heat treatment. By contrast, heat-treatment of SMS reduced OMP removal to < 10% except for carbamazepine with a removal of 90%. These results indicate that OMP removal by SMS and its tea is mediated by both enzymatic and non-enzymatic activities. The presence of copper, manganese, and iron (0.03, 0.88, and 0.33 µg L-1, respectively) as well as H2O2 (1.5 µM) in SMS tea indicated that the Fenton reaction represents (part of) the non-enzymatic activity. Indeed, the in vitro reconstituted Fenton reaction removed OMPs > 50% better than the teas. From these data it is concluded that spent mushroom substrate of the white button mushroom, which is widely available as a waste-stream, can be used to purify water from OMPs.


Assuntos
Agaricus , Ecossistema , Cafeína , Peróxido de Hidrogênio , Água , Chá , Carbamazepina
2.
Fungal Genet Biol ; : 103894, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657897

RESUMO

Inactivation of flbA in Aspergillus niger results in thinner cell walls, increased cell lysis, abolished sporulation, and an increased secretome complexity. A total of 36 transcription factor (TF) genes are differentially expressed in ΔflbA. Here, seven of these genes (abaA, aslA, aslB, azf1, htfA, nosA, and srbA) were inactivated. Inactivation of each of these genes affected sporulation and, with the exception of abaA, cell wall integrity and protein secretion. The impact on secretion was strongest in the case of ΔaslA and ΔaslB that showed increased pepsin, cellulase, and amylase activity. Biomass was reduced of agar cultures of ΔabaA, ΔaslA, ΔnosA, and ΔsrbA, while biomass was higher in liquid shaken cultures of ΔaslA and ΔaslB. The ΔaslA and ΔhtfA strains showed increased resistance to H2O2, while ΔaslB was more sensitive to this reactive oxygen species. Together, inactivation of the seven TF genes impacted biomass formation, sporulation, protein secretion, and stress resistance, and thereby these genes explain at least part of the pleiotropic phenotype of ΔflbA of A. niger.

3.
Antonie Van Leeuwenhoek ; 117(1): 58, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502333

RESUMO

Genes flbA-E are involved in sporulation and vegetative growth in Aspergillus nidulans. Inactivation of either of these genes results in a fluffy phenotype with delayed or even abolished sporulation. Previously, a non-sporulating phenotype was obtained by inactivating flbA in Aspergillus niger, which was accompanied by lysis, thinner cell walls, and an increased secretome complexity. Here, we further studied the role of the flb genes of A. niger. Strains ΔflbA, ΔflbB and ΔflbE showed increased biomass formation, while inactivation of flbA-D reduced, or even abolished, formation of conidia. Strain ΔflbA was more sensitive to H2O2, DTT, and the cell wall integrity stress compounds SDS and Congo Red (CR). Also, ΔflbC was more sensitive to SDS, while ΔflbB, ΔflbD, and ΔflbE were more sensitive to CR. On the other hand, inactivation of flbE increased resistance to H2O2. Enzyme secretion was impacted when the Δflb strains were grown on xylose. Strain ΔflbE showed reduced xylanase, cellulase and amylase secretion. On the other hand, amylase secretion at the periphery of the ΔflbA colony was reduced but not in its center, while secretion of this enzyme was increased in the center of the ΔflbB colony but not at its periphery. Inactivation of flbC and flbD also impacted zonal cellulase and amylase activity. Together, the Flb protein family of A. niger function in biomass formation, sporulation, stress response, and protein secretion.


Assuntos
Aspergillus niger , Celulases , Animais , Aspergillus niger/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/metabolismo , Estágios do Ciclo de Vida , Celulases/metabolismo , Amilases/metabolismo , Esporos Fúngicos
4.
Appl Microbiol Biotechnol ; 108(1): 202, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349550

RESUMO

Aureobasidium is omnipresent and can be isolated from air, water bodies, soil, wood, and other plant materials, as well as inorganic materials such as rocks and marble. A total of 32 species of this fungal genus have been identified at the level of DNA, of which Aureobasidium pullulans is best known. Aureobasidium is of interest for a sustainable economy because it can be used to produce a wide variety of compounds, including enzymes, polysaccharides, and biosurfactants. Moreover, it can be used to promote plant growth and protect wood and crops. To this end, Aureobasidium cells adhere to wood or plants by producing extracellular polysaccharides, thereby forming a biofilm. This biofilm provides a sustainable alternative to petrol-based coatings and toxic chemicals. This and the fact that Aureobasidium biofilms have the potential of self-repair make them a potential engineered living material avant la lettre. KEY POINTS: •Aureobasidium produces products of interest to the industry •Aureobasidium can stimulate plant growth and protect crops •Biofinish of A. pullulans is a sustainable alternative to petrol-based coatings •Aureobasidium biofilms have the potential to function as engineered living materials.


Assuntos
Aureobasidium , Biofilmes , Carbonato de Cálcio , Produtos Agrícolas , Gasolina
5.
Int J Food Microbiol ; 410: 110495, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37980813

RESUMO

Aspergilli can be used to produce food but can spoil it as well. Both food production and spoilage are initiated by germination of the conidia of these fungi that have been introduced by inoculation and contamination, respectively. Germination of these spores includes activation, swelling, establishment of cell polarity, and formation of a germ tube. So far, only quantitative single-species germination studies of fungal spores have been performed. Here, spore germination of the food spoilage fungus Aspergillus niger was studied quantitatively in mono-culture or when mixed with other food-relevant aspergilli (Aspergillus nidulans, Aspergillus terreus, Aspergillus clavatus, and Aspergillus oryzae). In the presence of the germination inducing amino acids proline or alanine, but not in the case of the lowly inducing amino acid arginine, the incidence of swelling and germ tube formation was reduced when 35,000 extra conidia of Aspergillus niger were added to wells containing 5000 of these spores. Adding 35,000 spores of one of the other aspergilli also did not have an effect on germination in the presence of arginine, but the germination inhibition was stronger when compared to the extra A. niger spores in the case of alanine. A similar effect was obtained with proline. Together, results show that the germination of A. niger conidia is impacted by the density of its own spores and that of other aspergilli under favorable nutritional conditions. These results increase our understanding of food spoilage by fungi and can be used to optimize food production with fungi.


Assuntos
Alanina , Aspergillus niger , Esporos Fúngicos , Alanina/metabolismo , Prolina/metabolismo , Prolina/farmacologia , Arginina/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38109492

RESUMO

The current animal-based production of protein-rich foods is unsustainable, especially in light of continued population growth. New alternative proteinaceous foods are therefore required. Solid-state fermented plant foods from Africa and Asia include several mold- and Bacillus-fermented foods such as tempeh, sufu, and natto. These fermentations improve the protein digestibility of the plant food materials while also creating unique textures, flavors, and taste sensations. Understanding the nature of these transformations is of crucial interest to inspire the development of new plant-protein foods. In this review, we describe the conversions taking place in the plant food matrix as a result of these solid-state fermentations. We also summarize how these (nonlactic) plant food fermentations can lead to desirable flavor properties, such as kokumi and umami sensations, and improve the protein quality by removing antinutritional factors and producing additional essential amino acids in these foods. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 15 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

7.
Cell Surf ; 10: 100108, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38156043

RESUMO

The cell wall fulfils several functions in the biology of fungi. For instance, it provides mechanical strength, interacts with the (a)biotic environment, and acts as a molecular sieve. Recently, it was shown that proteins and ß-glucans in the cell wall of Schizophyllum commune bind Cu2+. We here show that the cell wall of this mushroom forming fungus also binds other (micro-)nutrients. Ca2+, Mg2+, Mn2+, NO3-, PO43-, and SO42- bound at levels > 1 mg per gram dry weight cell wall, while binding of BO3-, Cu2+, Zn2+ and MoO42- was lower. Sorption of Ca2+, Mn2+, Zn2+ and PO43- was promoted at alkaline pH. These compounds as well as BO33-, Cu2+, Mg2+, NO3-, and SO42- that had bound at pH 4, 6, or 8 could be released from the cell wall at pH 4 with a maximum efficiency of 46-93 %. Solid-state NMR spectroscopy showed that the metals had the same binding sites as Cu2+ when a low concentration of this ion is used. Moreover, data indicate that anions bind to the cell wall as well as to the metal ions. Together, it is shown that the cell wall of S. commune binds various (micro-)nutrients and that this binding is higher than the uptake by hyphae. The binding to the cell wall may be used as a storage mechanism or may reduce availability of these molecules to competitors or prevent toxic influx in the cytoplasm.

8.
Fungal Biol Biotechnol ; 10(1): 21, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957766

RESUMO

BACKGROUND: Asexually developed fungal spores (conidia) are key for the massive proliferation and dispersal of filamentous fungi. Germination of conidia and subsequent formation of a mycelium network give rise to many societal problems related to human and animal fungal diseases, post-harvest food spoilage, loss of harvest caused by plant-pathogenic fungi and moulding of buildings. Conidia are highly stress resistant compared to the vegetative mycelium and therefore even more difficult to tackle. RESULTS: In this study, complementary approaches are used to show that accumulation of mannitol and trehalose as the main compatible solutes during spore maturation is a key factor for heat resistance of conidia. Compatible solute concentrations increase during conidia maturation, correlating with increased heat resistance of mature conidia. This maturation only occurs when conidia are attached to the conidiophore. Moreover, conidia of a mutant Aspergillus niger strain, constructed by deleting genes involved in mannitol and trehalose synthesis and consequently containing low concentrations of these compatible solutes, exhibit a sixteen orders of magnitude more sensitive heat shock phenotype compared to wild-type conidia. Cultivation at elevated temperature results in adaptation of conidia with increased heat resistance. Transcriptomic and proteomic analyses revealed two putative heat shock proteins to be upregulated under these conditions. However, conidia of knock-out strains lacking these putative heat shock proteins did not show a reduced heat resistance. CONCLUSIONS: Heat stress resistance of fungal conidia is mainly determined by the compatible solute composition established during conidia maturation. To prevent heat resistant fungal spore contaminants, food processing protocols should consider environmental conditions stimulating compatible solute accumulation and potentially use compatible solute biosynthesis as a novel food preservation target.

9.
Sci Rep ; 13(1): 12808, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550360

RESUMO

Growing colonies of the split-gill fungus Schizophyllum commune show action potential-like spikes of extracellular electrical potential. We analysed several days of electrical activity recording of the fungus and discovered three families of oscillatory patterns. Very slow activity at a scale of hours, slow activity at a scale of 10 min and very fast activity at scale of half-minute. We simulated the spiking behaviour using FitzHugh-Nagume model, uncovered mechanisms of spike shaping. We speculated that spikes of electrical potential might be associated with transportation of nutrients and metabolites.


Assuntos
Fenômenos Eletromagnéticos , Schizophyllum , Schizophyllum/fisiologia
10.
Antonie Van Leeuwenhoek ; 116(9): 867-882, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37316742

RESUMO

Aspergillus niger is widely used as a cell factory for the industrial production of enzymes. Previously, it was shown that deletion of α-1-3 glucan synthase genes results in smaller micro-colonies in liquid cultures of Aspergillus nidulans. Also, it has been shown that small wild-type Aspergillus niger micro-colonies secrete more protein than large mirco-colonies. We here assessed whether deletion of the agsC or agsE α-1-3 glucan synthase genes results in smaller A. niger micro-colonies and whether this is accompanied by a change in protein secretion. Biomass formation was not affected in the deletion strains but pH of the culture medium had changed from 5.2 in the case of the wild-type to 4.6 and 6.4 for ΔagsC and ΔagsE, respectively. The diameter of the ΔagsC micro-colonies was not affected in liquid cultures. In contrast, diameter of the ΔagsE micro-colonies was reduced from 3304 ± 338 µm to 1229 ± 113 µm. Moreover, the ΔagsE secretome was affected with 54 and 36 unique proteins with a predicted signal peptide in the culture medium of MA234.1 and the ΔagsE, respectively. Results show that these strains have complementary cellulase activity and thus may have complementary activity on plant biomass degradation. Together, α-1-3 glucan synthesis (in)directly impacts protein secretion in A. niger.


Assuntos
Aspergillus niger , Secretoma , Aspergillus niger/genética , Aspergillus niger/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
11.
Microbiol Res ; 272: 127397, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37141850

RESUMO

The CRISPRoff system was recently introduced as a programmable epigenetic memory writer that can be used to silence genes in human cells. The system makes use of a dead Cas9 protein (dCas9) that is fused with the ZNF10 KRAB, Dnmt3A, and Dnmt3L protein domains. The DNA methylation resulting from the CRISPRoff system can be removed by the CRISPRon system that consists of dCas9 fused to the catalytic domain of Tet1. Here, the CRISPRoff and CRISPRon systems were applied for the first time in a fungus. The CRISPRoff system resulted in an inactivation up to 100 % of the target genes flbA and GFP in Aspergillus niger. Phenotypes correlated with the degree of gene silencing in the transformants and were stable when going through a conidiation cycle, even when the CRISPRoff plasmid was removed from the flbA silenced strain. Introducing the CRISPRon system in a strain in which the CRISPRoff plasmid was removed fully reactivated flbA showing a phenotype similar to that of the wildtype. Together, the CRISPRoff and CRISPRon systems can be used to study gene function in A. niger.


Assuntos
Sistemas CRISPR-Cas , Epigênese Genética , Humanos , Metilação de DNA , Inativação Gênica , Fungos/genética , Edição de Genes/métodos , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética
12.
mBio ; 14(1): e0087022, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36629410

RESUMO

The fungus Aspergillus niger is among the most abundant fungi in the world and is widely used as a cell factory for protein and metabolite production. This fungus forms asexual spores called conidia that are used for dispersal. Notably, part of the spores and germlings aggregate in an aqueous environment. The aggregated conidia/germlings give rise to large microcolonies, while the nonaggregated spores/germlings result in small microcolonies. Here, it is shown that small microcolonies release a larger variety and quantity of secreted proteins compared to large microcolonies. Yet, the secretome of large microcolonies has complementary cellulase activity with that of the small microcolonies. Also, large microcolonies are more resistant to heat and oxidative stress compared to small microcolonies, which is partly explained by the presence of nongerminated spores in the core of the large microcolonies. Together, it is proposed that heterogeneity in germination and aggregation has evolved to form a population of different sized A. niger microcolonies, thereby increasing stress survival and producing a meta-secretome more optimally suited to degrade complex substrates. IMPORTANCE Aspergillus niger can form microcolonies of different size due to partial aggregation of spores and germlings. So far, this heterogeneity was considered a negative trait by the industry. We here, however, show that heterogeneity in size within a population of microcolonies is beneficial for food degradation and stress survival. This functional heterogeneity is not only of interest for the industry to make blends of enzymes (e.g., for biofuel or bioplastic production) but could also play a role in nature for effective nutrient cycling and survival of the fungus.


Assuntos
Aspergillus niger , Temperatura Alta , Aspergillus niger/metabolismo , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Água/metabolismo
13.
Chemistry ; 29(1): e202202616, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36181715

RESUMO

Solid-state NMR (ssNMR) spectroscopy facilitates the non-destructive characterization of structurally heterogeneous biomolecules in their native setting, for example, comprising proteins, lipids and polysaccharides. Here we demonstrate the utility of high and ultra-high field 1 H-detected fast MAS ssNMR spectroscopy, which exhibits increased sensitivity and spectral resolution, to further elucidate the atomic-level composition and structural arrangement of the cell wall of Schizophyllum commune, a mushroom-forming fungus from the Basidiomycota phylum. These advancements allowed us to reveal that Cu(II) ions and the antifungal peptide Cathelicidin-2 mainly bind to cell wall proteins at low concentrations while glucans are targeted at high metal ion concentrations. In addition, our data suggest the presence of polysaccharides containing N-acetyl galactosamine (GalNAc) and proteins, including the hydrophobin proteins SC3, shedding more light on the molecular make-up of cells wall as well as the positioning of the polypeptide layer. Obtaining such information may be of critical relevance for future research into fungi in material science and biomedical contexts.


Assuntos
Peptídeos , Proteínas , Proteínas/química , Espectroscopia de Ressonância Magnética , Peptídeos/análise , Polissacarídeos/química , Parede Celular/química
14.
Antonie Van Leeuwenhoek ; 115(9): 1151-1164, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35857156

RESUMO

Aspergilli are among the most abundant fungi worldwide. They degrade organic material and can be pathogens of plants and animals. Aspergilli spread by forming high numbers of conidia. Germination of these stress resistant asexual spores is characterized by a swelling and a germ tube stage. Here, we show that conidia of Aspergillus niger, Aspergillus oryzae, Aspergillus clavatus, Aspergillus nidulans and Aspergillus terreus show different swelling and germ tube formation dynamics in pure water or in water supplemented with (in)organic nutrients. Apart from inter-species heterogeneity, intra-species heterogeneity was observed within spore populations of the aspergilli except for A. terreus. Sub-populations of conidia differing in size and/or contrast showed different swelling and germ tube formation dynamics. Together, data imply that aspergilli differ in their competitive potential depending on the substrate. Moreover, results suggest that intra-species heterogeneity provides a bet hedging mechanism to optimize survival of aspergilli.


Assuntos
Aspergillus niger , Água , Animais , Esporos Fúngicos/metabolismo
15.
PLoS Genet ; 18(6): e1010086, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35704633

RESUMO

Penicillium roqueforti is a major food-spoilage fungus known for its high resistance to the food preservative sorbic acid. Here, we demonstrate that the minimum inhibitory concentration of undissociated sorbic acid (MICu) ranges between 4.2 and 21.2 mM when 34 P. roqueforti strains were grown on malt extract broth. A genome-wide association study revealed that the six most resistant strains contained the 180 kbp gene cluster SORBUS, which was absent in the other 28 strains. In addition, a SNP analysis revealed five genes outside the SORBUS cluster that may be linked to sorbic acid resistance. A partial SORBUS knock-out (>100 of 180 kbp) in a resistant strain reduced sorbic acid resistance to similar levels as observed in the sensitive strains. Whole genome transcriptome analysis revealed a small set of genes present in both resistant and sensitive P. roqueforti strains that were differentially expressed in the presence of the weak acid. These genes could explain why P. roqueforti is more resistant to sorbic acid when compared to other fungi, even in the absence of the SORBUS cluster. Together, the MICu of 21.2 mM makes P. roqueforti among the most sorbic acid-resistant fungi, if not the most resistant fungus, which is mediated by the SORBUS gene cluster.


Assuntos
Penicillium , Sorbus , Fungos/genética , Estudo de Associação Genômica Ampla , Família Multigênica , Penicillium/genética , Ácido Sórbico/farmacologia , Sorbus/genética
16.
Food Res Int ; 156: 111302, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651062

RESUMO

Microbial species are inherently variable, which is reflected in intraspecies genotypic and phenotypic differences. Strain-to-strain variation gives rise to variability in stress resistance and plays a crucial role in food safety and food quality. Here, strain variability in heat resistance of asexual spores (conidia) of the fungal species Aspergillus niger, Penicillium roqueforti and Paecilomyces variotii was quantified and compared to bacterial variability found in the literature. After heat treatment, a 5.4- to 8.6-fold difference in inactivation rate was found between individual strains within each species, while the strain variability of the three fungal species was not statistically different. We evaluated whether the degree of intraspecies variability is uniform, not only within the fungal kingdom, but also amongst different bacterial species. Comparison with three spore-forming bacteria and two non-spore-forming bacteria revealed that the variability of the different species was indeed in the same order of magnitude, which hints to a microbial signature of variation that exceeds kingdom boundaries.


Assuntos
Microbiologia de Alimentos , Temperatura Alta , Aspergillus niger , Bactérias , Inocuidade dos Alimentos , Esporos Fúngicos
17.
G3 (Bethesda) ; 12(7)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608315

RESUMO

Mating-type distribution within a phylogenetic tree, heterokaryon compatibility, and subsequent diploid formation were studied in 24 Aspergillus niger sensu stricto strains. The genomes of the 24 strains were sequenced and analyzed revealing an average of 6.1 ± 2.0 variants/kb between Aspergillus niger sensu stricto strains. The genome sequences were used together with available genome data to generate a phylogenetic tree revealing 3 distinct clades within Aspergillus niger sensu stricto. The phylogenetic tree revealed that both MAT1-1 and MAT1-2 mating types were present in each of the 3 clades. The phylogenetic differences were used to select for strains to analyze heterokaryon compatibility. Conidial color markers (fwnA and brnA) and auxotrophic markers (pyrG and nicB) were introduced via CRISPR/Cas9-based genome editing in a selection of strains. Twenty-three parasexual crosses using 11 different strains were performed. Only a single parasexual cross between genetically highly similar strains resulted in a successful formation of heterokaryotic mycelium and subsequent diploid formation, indicating widespread heterokaryon incompatibility as well as multiple active heterokaryon incompatibility systems between Aspergillus niger sensu stricto strains. The 2 vegetatively compatible strains were of 2 different mating types and a stable diploid was isolated from this heterokaryon. Sclerotium formation was induced on agar media containing Triton X-100; however, the sclerotia remained sterile and no ascospores were observed. Nevertheless, this is the first report of a diploid Aspergillus niger sensu stricto strain with 2 different mating types, which offers the unique possibility to screen for conditions that might lead to ascospore formation in A. niger.


Assuntos
Aspergillus niger , Diploide , Aspergillus , Aspergillus niger/genética , Filogenia , Reprodução , Esporos Fúngicos/genética
18.
mBio ; 13(3): e0062822, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35604096

RESUMO

Wood-decaying fungi of the class Agaricomycetes (phylum Basidiomycota) are saprotrophs that break down lignocellulose and play an important role in nutrient recycling. They secrete a wide range of extracellular plant cell wall degrading enzymes that break down cellulose, hemicellulose, and lignin, the main building blocks of plant biomass. Although the production of these enzymes is regulated mainly at the transcriptional level, no activating regulators have been identified in any wood-decaying fungus in the class Agaricomycetes. We studied the regulation of cellulase expression in the wood-decaying fungus Schizophyllum commune. Comparative genomics and transcriptomics on two wild isolates revealed a Zn2Cys6-type transcription factor gene (roc1) that was highly upregulated during growth on cellulose, compared to glucose. It is only conserved in the class Agaricomycetes. A roc1 knockout strain showed an inability to grow on medium with cellulose as sole carbon source, and growth on cellobiose and xylan (other components of wood) was inhibited. Growth on non-wood-related carbon sources was not inhibited. Cellulase gene expression and enzyme activity were reduced in the Δroc1 strain. ChIP-Seq identified 1474 binding sites of the Roc1 transcription factor. Promoters of genes involved in lignocellulose degradation were enriched with these binding sites, especially those of LPMO (lytic polysaccharide monooxygenase) CAZymes, indicating that Roc1 directly regulates these genes. A conserved motif was identified as the binding site of Roc1, which was confirmed by a functional promoter analysis. Together, Roc1 is a key regulator of cellulose degradation and the first identified in wood-decaying fungi in the phylum Basidiomycota. IMPORTANCE Wood-degrading fungi in the phylum Basidiomycota play a crucial role in nutrient recycling by breaking down all components of wood. Fungi have evolved transcriptional networks that regulate expression of wood-degrading enzymes, allowing them to prioritize one nutrient source over another. However, to date all these transcription factors have been identified in the phylum Ascomycota, which is only distantly related to the phylum Basidiomycota. Here, we identified the transcription factor Roc1 as a key regulator of cellulose degradation in the mushroom-forming and wood-degrading fungus Schizophyllum commune. Roc1 is highly conserved in the phylum Basidiomycota. Using comparative genomics, transcriptomics, ChIP-Seq and promoter analysis we have identified direct targets of Roc1, as well as other aspects of the transcriptional response to cellulose.


Assuntos
Agaricales , Basidiomycota , Celulase , Schizophyllum , Agaricales/genética , Agaricales/metabolismo , Basidiomycota/genética , Carbono/metabolismo , Celulase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Schizophyllum/genética , Schizophyllum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Fungal Genet Biol ; 161: 103699, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489527

RESUMO

Mycelia of saprotrophic basidiomycetes can cover large areas in nature that are typified by their heterogeneous nutrient availability. This heterogeneity is overcome by long distance transport of nutrients within the hyphal network to sites where they are needed. It is therefore key to be able to study nutrient transport and its underlying mechanisms. An IRDye-conjugate was used for the first time for imaging transport in fungi. A method was set up for time-lapse, high spatial resolution infrared imaging of IRDye-labelled deoxyglucose (IRDye-DG) in Schizophyllum commune and Agaricus bisporus. Scanning imaging visualised the tracer in individual hyphae as well as deeper tissues in mushrooms (mm-cm depth). The advantage of using fluorescence scanning imaging of IRDye in contrast to radiolabelled tracers studies, is that a higher spatial resolution and higher sensitivity (244 fg/ml) can be obtained. Moreover, it has a large field of view (25 × 25 cm) compared to microscopy (µm-mm range), allowing relatively fast and detailed imaging of large dimension samples.


Assuntos
Basidiomycota , Hifas , Microscopia , Micélio , Açúcares
20.
Fungal Biol Biotechnol ; 9(1): 3, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209958

RESUMO

Sustainable fungal materials have a high potential to replace non-sustainable materials such as those used for packaging or as an alternative for leather and textile. The properties of fungal materials depend on the type of fungus and substrate, the growth conditions and post-treatment of the material. So far, fungal materials are mainly made with species from the phylum Basidiomycota, selected for the mechanical and physical properties they provide. However, for mycelium materials to be implemented in society on a large scale, selection of fungal species should also be based on a risk assessment of the potential to be pathogenic, form mycotoxins, attract insects, or become an invasive species. Moreover, production processes should be standardized to ensure reproducibility and safety of the product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...